”“‘ International Journal of Electronics Engineering (ISSN: 0973-7383)
Volume 10 ¢ Issue 2 pp. 921-926 June - Dec 2018 www.csjournals.com

Data Deduplication Testing Tool: Destor

Naresh Kumar
Department of Computer Sc. and Engg, UIET, Kurukshetra University, Kurukshetra, INDIA

Abstract: Data redundancy is becoming big challenge for the organizations. Many researchers are doing research to
provide better solutions for storing unique data contents by removing the duplicate data. Data deduplication is very
important aspect for storing unique non-redundant data and to maintain data integrity with consistency. There are
different deduplication chunking techniques like whole file chunking, fixed size chunking and content defined
chunking. Destor tool provides a platform to evaluate the performance of these chunking techniques. In this paper
configuration of Destor tool is described with performance matrices. This tool can be installed on Linux 64 bit
system. To install the Destor tool there are some dependent packages those are needed to be installed on the Linux
64 bit system. These dependencies are also discussed with Destor tool installation commands. Different
deduplication techniques are also tested with the help of Destor tool. Experimental results on different datasets are
also presented on whole file chunking, fixed size chunking and content defined chunking.

Keywords: Data deduplication, chunking, fixed-size chunking, variable-size chunking, Destor.

1. Introduction

Today the growth of digital data in computer world is the cause of problem of inefficient storage space utilization. In
this big world of data, data comes from variant sources in variant forms. An individual computer, tablet, mobiles or
servers are the different data sources producing data in structured (relational data), semi-structured (XML data) and
in unstructured (PDF, media logs, word, text) forms. This increase in digital data motivates storage optimization.
“Storage Optimization” is a term that indicates to any wise technique which reduces the space utilization required to
pile up a dataset. These techniques have a worthy role to play in enhancing data storage efficiently.

Deduplication [1] also known as Single instance storage (SAS) is a lossless technique that has become very
convenient in large scale storage systems for space optimization. It eliminates the redundant data by physically
storing only data that is unique. It reduces storage capacity effectively by storing only one copy. Deduplication is
performed in three ways named as Inline, Post process, Concurrent either on source side or target side [2]. Inline
method is implemented in memory before it is sent to the target unlike the Post process where the entire data backup
reaches the target memory. The further classification of source deduplication [3] is based on deduplication
granularities i.e Local chunk level and Global chunk level deduplication. In local chunk level, the elimination of
duplicate chunks is performed before transferring them to backup destination within the same client. In global chunk
level, the removal of redundant chunks is performed globally across various clients. Concurrent method comes in
execution while data is being ingested to the target.

2. Deduplication Techniques

There are various data deduplication techniques including content defined chunking, static fixed size chunking and
whole file chunking. Though static fixed size chunking is robust and efficient, it has a limitation of “boundary shift
problem”. Content Defined Chunking (CDC)[4] approach of data deduplication achieve high deduplication ratio, but
it is too much time consuming as compared with the other approaches. CDC prevents the boundary shift problem of
the static chunking approach by partitioning the input data stream according to the contents of the data but not to the
local boundary. A CDC based network file system LBFS [5] eliminates redundant data in low bandwidth networks.
It is the first file system that partitions data stream into variable sized chunks by finding proper cut point for each
chunk. Chunking techniques like Sliding Window approach,Two Thresholds Two Divisor (TTTD) [6] and
Asymmetric Extremum (AE) content defined chunking [7] provide much more improved results with variable sized
chunks.

Page | 921

http://www.csjournals.com/

”“‘ International Journal of Electronics Engineering (ISSN: 0973-7383)
Volume 10 ¢ Issue 2 pp. 921-926 June - Dec 2018 www.csjournals.com

1. Destor Tool

Destor deduplication tool is an open source tool which is freely available at GITHUB [8]. Destor is basically a
platform which provides performance evaluation of data deduplication techniques. This Destor tool was developed
byMin Fu [8]. This tool can run on 64-bit linux operating system.

Instructions for installing the Destor tool :First download library package Glib [9] on Linux 64-bit (Ubuntu
14.04) operating system. At next step, install packages those have dependencies on Glib Zliblg-dev, libffi-dev,
libssl-dev, autotools-dev and automake. These packages are required to be installed on linux operating system for
making Glib in working state.

These are the steps for installing Destor tool on Linux 64 bit system

Step 1 and Step 2 for installing dependencies which are required to run the Destor tool.

Step 1: sudo apt-get install zlib1g-dev
Step 2: sudo apt-get install libffi-dev

Download the Glib first to install the Destor. Glib is the library which is required to run the Destor tool. Now change
the directory where Glib is downloaded and then run these following commands to install Glib on the system.

Step3: cd [PATH_TO_GLIB]
Step 4: ./configure

Step5 : make

Step 6: sudo make install

Now run these commands to copy the required Glib files into the /include directory.

Step 7: cd /usr/local/

Step 8: sudo cp include/glib-2.0/* include/

Step 9: sudo cp lib/glib-2.0/include/glibconfig.h include/
Step 10: cd lib

Step 11: sudo link libglib-2.0.so libglib.so

Now it is required some more dependencies packages for running the Destor tool properly. Run these commands on
Terminal for installing these packages.

Step 12: sudo apt-get install libssl-dev
Step 13: sudo apt-get install autotools-dev
Step 14: sudo apt-get install automake

All packages are installed for Destor. Now change the directory where Destor is downloaded and run the following
commands for installing Destor on the system.

Step 15: c¢d [DIR_OF_DESTOR]
Step 16: ./configure

Step 17: automake --add-missing
Step 18: make

Step 19: sudo make install

Page | 922

http://www.csjournals.com/
https://github.com/fomy

”LL International Journal of Electronics Engineering (ISSN: 0973-7383)
Volume 10 ¢ Issue 2 pp. 921-926 June - Dec 2018 www.csjournals.com

2. Working of Destor Tool

Destor can be run by using following commands:
1. sudo destor /path/to/data/ -p
this command is used to create backup for the specified data.

2. sudo destor r<Jobld> /path/to/store —p
This command is used to restore the backed up data.

3. destor -h
this command can be executed for the help.

4. sudo destor -t /path/to/data/
this command is used to create a trace for the data on which backup job is executed.
There are various techniques in destor tool like file level chunking, fixed size chunking, variable sizeRabin
CDC, TTTD, and AE. These techniques can be executed by modifying destor.config file. This
destor.config file should be placed in working directory of the destor.
Working directory: /home/data/working.
In destor.config there are various chunking techniques; by default it runs rabin based cdc technique for
backup job. To run different techniques using Destor tool, remove hash(#) from the technique name and
save file as shown in Fig. 1.

¥ Specify the chunking algorithm.

¥ It can be rabin, fixed, "normalized rabin", tttd, file, and
as.

§ "file" indicates an approximiate file-level deduplication.
¥ For example,

chunk-algorithm "normalized rabin
chunk-algorithm file
chunk-algorithm fixed
chunk-algorithm tttd

¥ chunk-algorithm ae
chunk-algorithm rabin

FE O e

¥ Specify the average/maximal/minmal chunk size in bytes.
fchunk-avg-=ize 4056

chunk-avg-size 4056

chunk-max-size 65536

chunk-min-size 512

Fig. 1: destor.config file
3. Testing on Destor Tool

Testing the performance of different deduplication techniques on various datasets, it has been installed with Destor
tool on Dell Inspiron i5 having 500 GB Hard Disk and 4 GB RAM using Ubuntu 14.04 Operating system.
Experimental results are presented for whole file chunking, fixed size chunking and variable size chunking.

Experimental Results:

In this section, it has been tested with the performance on structured, semi-structured and unstructured datasets using
Destor [8] tool. Data deduplication is tested at file based, fixed size blocks based and variable sized chunks based.
When the duplicity is checked over multiple files, the entire file is treated as single one and then duplicate data
filesare removed to maximize storage space. In fixed size chunking the file is partitioned into fixed size blocks and

Page | 923

http://www.csjournals.com/

L

Volume 10 e Issue 2 pp. 921-926

International Journal of Electronics Engineering (ISSN: 0973-7383)
June - Dec 2018 www.csjournals.com

redundancy is removed. Finally, the variable size chunking that partitions the datastream according to the contents
with variable size chunks. It has performed the testing on a machine with configuration Dell Inspiron i5 CPU with
installed memory 4GB on 64bit operating system in Ubuntu version 14.04. The testing performed on different
datasets with the help DESTOR tool. Table 1. shows result on various datasets with different deduplication
techniques and results are shown graphically from Fig. 2 to Fig. 4.

Input Datasets Deduplication Techniques Before Dedupe Input | After Dedupe Output
Data Size(Bytes) Data Size(Bytes)
Semi-structured File 4164058712(4.16GB) 736723424(0.73GB)
Semi-structured Fixed 4164058712 219059884
Semi-structured Rabin CDC 4164058712 367212926
Semi-structured TTTD 4164058712 100698326
Structured File 2007217590(2.007GB) 577872144(0.57GB)
Structured Fixed 2007217590 118842424
Structured Rabin CDC 2007217590 197072522
Structured TTTD 2007217590 103982642
Unstructured File 2870495530(2.87GB) 594362064(0.59GB)
Unstructured Fixed 2870495530 455055824
Unstructured Rabin CDC 2870495530 296722216
Unstructured TTTD 2870495530 256145918
Table 1: Experimental results of different deduplication techniques on DESTOR tool

4,58+09

g0 |

358409 ¢

3E«09 1

2.58+08 4

%409 | Er
158409 4

1£409 |
50000000 ¢

tie

0

Fxed Rabin
coc

[

= Before Daduglication
Input
Data Stze|8ytes)
= After Deduplication
Output
Dats Size|Dyres)

o

Fig. 2: For Semi-structured data

2.5E+05

26+05 |
1L5E+09 1
1E+08 1
50000000 |

0

Fie Fixed Rabn
<nC

= Before Deduplication
Input
Data Sze|Bytes)
= After Dedupication
Qutput
Data Size(Bytes)
D

Fig. 3: Results for Structured Datasets

Page | 924

http://www.csjournals.com/

”,EE International Journal of Electronics Engineering (ISSN: 0973-7383)
Volume 10 ¢ Issue 2 pp. 921-926 June - Dec 2018 www.csjournals.com

3E+09
2.5E+09 -
m Before Deduplication
2E+09 Input
Data Size(Bytes)
1.5E+09
1E+09 - | After Deduplication
Output
50000000 - Data Size(Bytes)
0 T T T T
File Fixed Rabin TITD
chC

Fig. 4: Results for Unstructured Datasets

When job is executed then backup.log, trace file and restore.log file is created. Backup.log contains information like
job id, original size of the file and other parameters like deduplication ratio, total time etc. Trace file contains file
name and its hashes and the size of the chunks created by the selected technique. Restore.log file contains job id
which can be used to restore the original data with the help of restore command. Experimental snapshots from
DESTOR tool is shown from Fig. 5 to Fig 7 for backup.log, inputdata.trace and restore.log files. It is mandatory to
move old backup.log and restore.log files from /home/data/working/ to any other location in hard disk to test new
datasets as new backup.log and restore.log will be created for new input datasets, otherwise, deduplication results
for new datasets will not be generated.

-
26 3123557744 303547041 1.0000 20006 854711 755,02
27 312353M744 3035470¢1 1.0000 0.0000 8 50 B 0 0 B-118.37
26 2705124431 30355251¢ 1.0000 0.0000 8 54 711 7 85.5%9
25 2844723280 3035357160 1.0000 2.0000 834711 750.29

Fig. 5: Backup.log file

tflile mtmru 16

L (%ch wopy) . Ext
B7ROA2ZCEAIORTHFIAADBAADEHHTFAGCLDTS00MLL dEde
BOABGHAADDAINFDATOPOOBODEBAGLETFIrS7 1200008 K507
LECH7rRErOSA9C4 il DrECiRODTASEAALDPEERAOAR 25541
SAFreLSH0T10CRALALZCBFARGAIRERGAONFEADRNA 1630
ATTACARSPAASCRSIYITIEGrI200DABKAKOA2EHGS 2071
0176113180601 7 HECAEASAATADA0A2CDARID2AZHS 6404
SOLErPAGEDUSCLANCLMANBIFHIDOALDER2SOANING 21301
ABCDAKBABIRATOOEAZOIDTIACHAGTHOOOKEBKHOT 4510
HOTDBELFOAETE2CEDBIKFIORIDIEFABEBACTHYED 2440
1TAUBTRODTRROFDAREGOBIOCAANOBESOAZLORILAED 08D
CARBOBPABEATEBODIBCEAIGEAARORTODOBT7THATE B423
QOBROAFBEBLTOFPEGCOABALBOBLAJZNNLLIA0BORNLIAS BAKS
AGHLIBLONAZABA43DEBLAPBAOTHUBOITIINTACTQ 3002
OBOAALIABKTALODDKAIFEAALLIABFIFFLIBLELOAGTO BOLA
BESBCOCHEIZIJNLEBPIABAIBABRBRLLEDACAN A4l BEAD
FEAZRLADOABTANIEDAOLAIBFIDAOINNANIPODECEN YBB2
OBBREASKFORDRBETIHBDADBATICAZNNLALO0ODAR LBV O 7737
AAGTIROFFASAODOTHARIADALBRIAGIEABGAIZEGIT 23111
OROEGHICOVIABTUBGERABGDARIABFACERABADRITTIAZ 2074
GODCAAIDONPRALATEROAADIGRDADOBEBOCLIIANATIA 4806
OACAODWBOLEDFABHLEGDEDEUATONDOARNISBAALOT BB70
ABGAACAVERTNIAFORTIRADGBDCEODOAIBALGCNAOD NIOS
ARCHLTAOROSHNTOANBEGTANPVEIADNTIDINRDETOARTEG L1482
DELFAGAAVDIAZILDANPIDIRIAAANOTEOARTEFAGHIOD 220
TRPFCAATEIADTARNACERCEARDADTATIOARAZANLIOZ 14611
FALAKPLLITORIAVFATFAGRORLADARECRATVGADBHIAGD 15501
FIBORATHIDIAANBTIPBEBIASHORORBOABNLILIIABBDOGRT BIT0
ACAZYBOEAABRBACEYLACHIRT400CEHH%IABAALILION LIN8T 6
PAAMAAN DI AR D R RO R TR RS AN

Fig. 6: Trace file

Page | 925

http://www.csjournals.com/

”LL International Journal of Electronics Engineering (ISSN: 0973-7383)
Volume 10 ¢ Issue 2 pp. 921-926 June - Dec 2018 www.csjournals.com

|.29 2844723280 8 2259.1174 &7 .8217

Fig. 7: Restore file

jghid: &

bhackup path: fhome/rahul/Desktop/dataset/
numper of files: 18

number of chunks: 208963 (9132 bytes on average)
number of unigue chunks: 618

total size(B): 2007217590

stored data size(B): 577872144
deduplication ratio: 1.0000, 330.2293
total time(s): 15.011

throughput{MB/s): 121.24

numper of zero chunks: 0

size of zero chunks: 0

number of rewritten chunks: 0

size of rewritten chunks: 0

rewritien rate in size: 0.000
read_time ; 2.327s, 782.11MB/s

chunk time ;. 11.933s, 152.52MB/s
hash_time.; 11.539s, 157.72MB/s
dedup_time ; 0.324s, 5621.54MB/s

rewrite time . 0.017s, 109271.19MB/s
filter_time ; 0.377s, 4824 41MB/s
write_time.; 0.015s. 121741.37MB/s

Fig. 8: Results from File based Technique.

4. Conclusion

In this paper, it has been tested with different techniques for data deduplication. For net deduplication performance and increased
throughput, an effective chunking technique is required. This deduplication testing tool will help researchers to select an
appropriate and feasible technique for their work in deduplication. Table 1. conclude basic differences between various
deduplication techniques. In future, 1 will work to design testing tool for deduplication of distributed storage systems for Big
Data.

7. References:

[1] Jaehong Min, Daeyoung Yoon, and Youjip Won, “Efficient De-duplication Techniques for Modern Backup
Operation”, IEEE Transactions on Computers, Vol. 60, No. 6, pp. 824-840, 2011.

[2] D. Harnik, B.Pinkas, A-Shulman-Peleg, “Side channels in cloud services, the case of deduplication in cloud
storage”, IEEE Journal of Security Privacy, No. 8, pp. 40-47. 2010.

[3] Zhu, B., K. Li and H. Patterson, “Avoiding Disk bottleneck in the data domain deduplication file system.
Proceedings of the 6th USENIX Conference on File and Storage Technologies, February 26-29, San Joes, CA. USA.,
pp: 269-282, 2008.

[4] Kave Eshghi and Hsiu Khuern Tang,” A Framework for Analyzing and Improving Content-Based Chunking Algorithms”,
Hewlett Packard Development Company and Intelligent Enterprise Technologies Laboratory, Feb 2005.

[5] Athicha Muthitacharoen, Benjie Chen, and David Mazieres, ”A Low-Bandwidth Network File System” ,ACM
SIGOPS Operating System Review, vol. 35, no. 5, pp. 174- 187,2001.

[6] Jyoti Malhotra and Jagdish Bakal,”A Survey and Comparative Study of Data De-duplication Techniques”, IEEE
International Conference on Pervasive Computing (ICPC), pp. 1-5, 2015.

[7] Y. Zhang, H. Jiang, D. Feng and Y. Zhou, “AE: An Asymmetric Extreme Content Defined Chunking Algorithm

for Fast and Bandwidth-Efficient Data Deduplication”, IEEE Conference on Computer Communications (INFOCOM), pp.
1337-1345, 2015.

[8] Destor, https://github.com/fomy/destor Accessed on 8-November-2018.

[9] Glib, http://ftp.gnome.org/pub/GNOME/sources/glib/2.49/, Accessed on July-2018.

Page | 926

http://www.csjournals.com/

